

Motivation

Real-time applications like robotics and augmented reality need to swiftly detect and respond to **complex events** as they unfold, beyond a limited set of predefined classes.

We introduce a novel task called Streaming Detection of Queried Event Start (SDQES), which leverages natural language to enable complex events descriptions in **streaming video**.

The goal of goal of SDQES is to output a high accuracy prediction of event start (*i.e.*, output time with high accuracy and low latency. We propose new metrics especially suited for measuring progress on this task: Streaming Recall and Streaming Minimum Distance.

$$egin{aligned} ext{SR}(k,W) &= rac{1}{|Q|} \sum_{q \in Q} \mathbf{1} \{ \exists t_{ ext{out}} \in P_M^{(k)} : -anticipation \leq t_s - t_{ ext{out}} \leq l \ & ext{SMD}(k) = rac{1}{|Q|} \sum_{q \in Q} \min_{t_{ ext{out}} \in P_M^{(k)}} |t_s - t_{ ext{out}}| \end{aligned}$$

The Challenge: there are no existing datasets for this task, and current ODAS streaming **models are limited**—they can only effectively output to a limited set of predefined classes.

Streaming Detection of Queried Event Start

Cristóbal Eyzaguirre, Eric Tang, Shyamal Buch, Adrien Gaidon, Jiajun Wu, Juan Carlos Niebles

Dataset Collection

lage Queries
ght turns green.
is crossing the street.
appropriate to vacuum.
n leaves the house.
ard after Luse the ATM

latency

To address this, we develop a pipeline to generate a **new dataset for the task**, leveraging the Ego4D annotations to facilitate training and benchmarking of models for this capability.

Models: Streaming Adapters

Our proposed approach leverages pretrained vision-language foundation models by integrating parameter-efficient streaming adapters to deliver real-time, continuous event detection on **untrimmed video streams**.

We evaluate a variety of combinations of Streaming Adapters and dual-encoder visionlanguage models, including the current state-of-the-art (SOTA) egocentric video encoder.

Main takeaways include:

	1 Min.		5 Min.					
Method	SR@1↑	SMD@1	SR@1↑	SR@2↑	SR@3↑	SMD@1↓	SMD@2↓	SMD@3
Zero-Shot CLIP	16.9	24.3	7.9	11.6	14.0	151.3	140.3	132.6
CLIP + Adapter CLIP + QR-Adapter	$\begin{array}{c} 19.5\\ 23.7\end{array}$	$\begin{array}{c} 23.5\\ 21.2 \end{array}$	$\begin{array}{c} 8.9\\ 9.1 \end{array}$	$13.7 \\ 14.1$	$\begin{array}{c} 17.2 \\ 18.7 \end{array}$	$135.7 \\ 136.7$	$121.7 \\ 117.7$	$113.3 \\ 102.9$
LaViLa + Adapter LaViLa + QR-Adapter	$\begin{array}{c} 19.5 \\ 29.1 \end{array}$	$\begin{array}{c} 23.4 \\ 18.1 \end{array}$	$8.7 \\ 9.3$	$13.0 \\ 12.8$	$\begin{array}{c} 16.2 \\ 16.5 \end{array}$	$163.4 \\ 132.1$	$151.7 \\ 115.9$	$144.0 \\ 104.1$
EgoVLP + Adapter EgoVLP + QR-Adapter EgoVLP + ST-Adapter EgoVLP + RN-Adapter	$18.1 \\ 28.8 \\ 17.4 \\ 25.7$	$24.0 \\ 17.7 \\ 30.5 \\ 21.3$	$8.4 \\ 9.7 \\ 8.6 \\ 9.4$	$13.0 \\ 14.1 \\ 13.4 \\ 15.4$	$16.7 \\ 17.9 \\ 17.0 \\ 20.1$	$160.8 \\ 133.1 \\ 170.7 \\ 174.8$	$148.7 \\ 120.8 \\ 161.4 \\ 159.0$	$141.5 \\ 110.9 \\ 155.6 \\ 149.2$
EgoVideo + Adapter	27.1	28.8	16.0	21.8	26.4	148.5	138.3	131.2

• The proposed models latency, suitable for real-

	Memory	Comp		
Model	# parameters	Multiply Adds	Floating Point Operations	Latency
EgoVLP backbone	$180.92~\mathrm{M}$	$7.85 \ \mathrm{TMACs}$	15.7 Tflops	$1.68 \mathrm{\ s}$
EgoVLP + Adapter EgoVLP + ST Adapter EgoVLP + QRNN Adapter EgoVLP + RetNet Adapter	+7.9% +7.9% +7.5% +7.6%	+12.7% +12.7% +12.0% +15.2%	+12.8% +12.8% +12.2% +15.3%	+15.5% +18.5% +21.5% +99.5%
EgoVLP Sliding Window	+0.1%	+298.5%	+298.8%	+260.2%

Project Website sdgesdataset.github.io

Main Results

We evaluate baselines on both short clips and extremely long untrimmed videos.

• Training on our dataset significantly improves performance on SDQES, with all adapted models finetunned on the generated data surpassing the zero-shot baseline. Streaming adapters with long temporal horizons outperform non-temporal models, proving that more **complex temporal modeling capabilities are beneficial** for SDQES.

are	efficient,	maintaining	high	performance	with	minimal
-time	e applicatio	ons.				